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Wehave examined theMaxwell-Garnett, invertedMaxwell-Garnett, and Bruggeman rules for evaluation
of the mean permittivity involving partially empty cells at particle surface in conjunction with the
finite-difference time-domain �FDTD� computation. Sensitivity studies show that the invertedMaxwell-
Garnett rule is the most effective in reducing the staircasing effect. The discontinuity of permittivity at
the interface of free space and the particle medium can be minimized by use of an effective permittivity
at the cell edges determined by the average of the permittivity values associated with adjacent cells. The
efficiency of the FDTD computational program is further improved by use of a perfectly matched layer
absorbing boundary condition and the appropriate coding technique. The accuracy of the FDTDmethod
is assessed on the basis of a comparison of the FDTD and the Mie calculations for ice spheres. This
program is then applied to light scattering by convex and concave aerosol particles. Comparisons of the
scattering phase function for these types of aerosol with those for spheres and spheroids show substantial
differences in backscattering directions. Finally, we illustrate that the FDTD method is robust and
flexible in computing the scattering properties of particles with complex morphological configurations.
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1. Introduction

The finite-difference-time domain �FDTD� technique
is one of the most promising methods for solution of
the scattering properties of nonspherical and inho-
mogeneous particles.1–3 The fundamental principle
of this method has remained essentially unchanged
since its inception more than 30 years ago,1 that is,
the electromagnetic field is solved on a discrete lattice
on the basis of time-dependent Maxwell equations.
In the FDTD computation the spatial domainmust be
discretized by use of a grid mesh. It is well known
that a Cartesian grid is more practical and flexible

than a curvilinear or target-conforming grid mesh
because the latter type of grid mesh is usually appli-
cable only to some specific geometries. In addition, a
non-Cartesian difference scheme may substantially
complicate the criterion of computational stability,
boundary conditions, and the specification of the ra-
diation source. When a particle with a curved sur-
face is defined over a Cartesian grid, its geometry is
approximately represented by a number of cubic cells
in a staircasing manner. The staircasing effect can
potentially be large if the dielectric constants of the
particle differ substantially from those of the host
medium. To reduce this effect in the FDTD compu-
tation, Yang and Liou2,3 applied theMaxwell-Garnett
rule4 to evaluate the mean permittivity of the par-
tially empty cells at the particle surface where sub-
grid variations of the optical constants exist.
However, various methods can be used to compute
the mean permittivity, and their relative perfor-
mance requires further study.
In addition to the staircasing effect, a discontinuity

of permittivity exists at a cell edge located at the
interface of a particle medium and free space, even if
the grid mesh is target conforming �e.g., the Carte-
sian grid for a cubic geometry�, a fact that had not
been addressed in the FDTD implementation. In
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the time-marching iterations for computing the near
field, permittivity values at cell edges are required.
Thus an appropriate averaging procedure must be
used to overcome the discontinuity of permittivity at
a cell edge if the optical constants for the four adja-
cent cells are different. In this study we have im-
proved the Cartesian FDTD scheme by minimizing
the staircasing effect and the discontinuity of permit-
tivity at the interface of the particle medium and free
space. Because the performance of the absorbing
boundary is critical to the accuracy of the FDTD so-
lution, we also applied the newly developed perfectly
matched layer �PML� absorbing boundary condi-
tion.5,6 In Section 2 we present three approaches to
evaluating the mean dielectric constants for a given
grid cell and suggest an appropriate way to compute
effective dielectric constants at cell edges. To apply
the PML technique we developed an equivalent ver-
sion of Berenger’s PML equations.6 In Section 2 the
program-coding technique is discussed in terms of
reduction of CPU time and memory requirements.
Section 3 describes the numerical tests that we car-
ried out to investigate the relative performance of
various approaches to determining the mean and ef-
fective dielectric constants for grid cells and cell
edges. Applications to light scattering by non-
spherical aerosols are described in Section 4. Con-
clusions are given in Section 5.

2. Cartesian Finite-Difference Time-Domain Scheme

A. Mean Permittivity for Partially Empty Cells

When a nonrectangular particle is defined in a Car-
tesian grid mesh, grid cells located near the particle
surface may be partially empty. Because subgrid
features cannot be specified in the Cartesian discrete
lattice, a brute-force approach is usually used for de-
termining the dielectric constants for these surface
cells; that is, a cell is considered to be empty �with
unity permittivity� if half of the cell volume is outside
the particle. Otherwise, the dielectric properties of
the particle are assigned to the cell. This approach
produces a sharp truncation in terms of dielectric
properties in representing the scattering particle by a
step-by-step approximation, and the pertinent stair-
casing effect may be potentially large. Thus it is
necessary to evaluate themean dielectric constant for
the partially empty cells.
TheMaxwell-Garnett4 and Bruggeman7 rules have

commonly been applied to the evaluation of the mean
dielectric constant associated with inhomogeneity.
For a given volume containing two dielectric media
�host and inclusion�, the mean dielectric constant
given by the Maxwell-Garnett rule is

ε� � εm�ε � 2εm � 2f �ε � 2εm�

ε � 2εm � f �ε � 2εm� � , (1)

where εm and ε are the permittivities of the host and
the inclusion media, respectively, and f is the volume
fraction of the inclusion. It can be seen that the
roles of host and inclusion in Eq. �1� are not recipro-

cal. If we transpose the roles of the twomedia in the
Maxwell-Garnett rule, we obtain the inverted
Maxwell-Garnett rule as follows:

ε� � ε�εm � 2ε � 2�1� f ��εm � 2ε�

εm � 2ε � �1� f ��εm � 2ε� � . (2)

The Bruggeman rule can be expressed in the follow-
ing general form:

1
�v � � �

�v

ε�r�� � ε�
ε�r�� � 2ε�

dv� 0, (3)

where �v is the spatial region for accounting for the
inhomogeneity of dielectric properties. If only two
media are considered, Eq. �3� reduces to

f
ε � ε�

ε � 2ε�
� �1� f �

εm � ε�
εm � 2ε�

� 0. (4)

Note that the roles of the host and inclusion media
are reciprocal in the Bruggeman equation. Equa-
tion �4� is nonlinear and complex, and its solution is
not straightforward. For practical calculations, we
have derived an efficient iterative scheme for the so-
lution of Eq. �4�, given by

ε�n�1 �
εεm � 2� fε � �1� f �εm�ε�n
fεm � �1� f �ε � 2ε�n

. (5)

With an initial value of ε�0 � fε � �1 	 f �εm, a conver-
gent solution can be obtained with iterations in fewer
than ten steps.
Figure 1 shows the mean permittivity values eval-

uated from Eqs. �1�, �2�, and �4� for a cell composed of
free space and ice at 0.55- and 15-
m wavelengths.
The refractive indices of ice for these two wave-
lengths are 1.311 � i3.11 � 10	9 and 1.571 �
i0.1756, respectively. Note that the complex per-

Fig. 1. Mean permittivity evaluated from Maxwell-Garnett, in-
verted Maxwell-Garnett, and Bruggeman rules for grid cells com-
posed of free space and ice at 0.55 and 15 
m. The refractive
indices for the two wavelengths are, respectively, 1.311 � i3.11 �
10	9 and 1.571 � i0.1756.
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mittivity �εr � iεi� is related to the complex refractive
index �mr � imi� as follows:

εr �mr
2 �mi

2, εi � 2mrmi. (6)

From Fig. 1 it is evident that the differences in per-
mittivity evaluated from the three schemes are very
small for the optically thin case at 0.55 
m. Because
the absorption of ice at 0.55 
m is extremely small, it
does notmake a noticeable difference in the evaluation
of the mean imaginary part of the permittivity. For
the 15-
mwavelength, however, the imaginary part of
the refractive index is quite large. In this case, the
absorption properties computed from the FDTD tech-
nique depend on the approach used to evaluate the
mean permittivity. The mean permittivity evaluated
by the Bruggeman rule lies between those evaluated
from the Maxwell-Garnett and inverted Maxwell-
Garnett rules. Results computed from Bruggeman’s
equation converge to those determined from Maxwell-
Garnett’s equation if the cells are nearly empty, and
they converge to the values evaluated from the in-
verted Maxwell-Garnett rule when ice dominates the
cells. However, the overall patterns of variation of
mean permittivity versus fraction of host medium are
similar for the three approaches.

B. Effective Permittivity at Cell Edges

The finite-difference analog of Maxwell’s equations
has a staggered form; that is, the electric field is
evaluated at the cell edges at time step n, whereas
the magnetic field is evaluated at the center of cell
faces at time step n� 1�2. Thus, for time-marching
iterative computation of the electric field, the permit-
tivity values at the cell edges must be known. It is
straightforward to specify the permittivity value at a
cell edge if the four adjacent cells have the same
dielectric properties. However, there is a disconti-
nuity or singularity of permittivity at the cell edge if
the four adjacent cells are heterogeneous. In this
case it is neither mathematically suitable nor physi-
cally correct to assume indiscriminately that the
value of the permittivity at the cell edge is the value
associated with one of the adjacent cells, although
this approach has commonly been employed for nu-
merical realization of the FDTD technique. To de-
rive an appropriate value of permittivity at the cell
edge we begin with the discretization of Maxwell’s
equations. Consider the z component of the E field
as an example. The equation that governs the tem-
poral variation of an electric field is given by

εr�r��

c
�E� �r�, t�

�t
� kεi�r��E� �r�, t� �  �H� �r�, t�, (7)

where c is the speed of light in vacuum, k� ��c, where
� is the angular frequency of the electromagnetic
wave, and the real and imaginary parts of permittivity
can be computed from Eqs. �6�. Let the cell center be
denoted �x, y, z� � �I�x, J�y, K�z�, where �x, �y, and
�z are the cell dimensions along the three coordinate
axes. Integration of the z component of the expres-

sion in Eq. �7� over the domain enclosed by the dotted
lines shown in Fig. 2 leads to

�
I�x

�I�1��x

�
J�y

� J�1��y

� �H� �r�, t��zdxdy

� �x�Hx�r��I� 1�2, J, K�, t� �Hx�r��I� 1�2,

J� 1, K�, t�� � �y�Hy�r��I� 1, J� 1�2, K�, t�

�Hy�r��I, J� 1�2, K�, t��, (8)

where r��I � 1�2, J, K� represents the position vector
for point ��I � 1�2��x, J�y, k�z�. It should be
pointed out that the discretization in Eq. �8� does not
produce any truncation error. Furthermore, inte-
grating the left-hand side of Eq. �7� yields

�
I�x

�I�1��x

�
J�y

� J�1��y �εr�r��

c
�Ez�r�, t�

�t
� kεi�r��Ez�r�, t��dxdy

� �ε�r�I� 1�2, J� 1�2, K�

c
�

�t
� kε�i�I� 1�2,

J� 1�2, K�� �
I�x

�I�1��x

�
J�y

� J�1��y

Ez�r�, t�dxdy

� �ε�r�I� 1�2, J� 1�2, K�

c
�

�t
� kε�i�I� 1�2,

J� 1�2, K��Ez�r��I� 1�2, J� 1�2, K�, t��x�y, (9)

where ε�r�I� 1�2, J� 1�2, K� and ε�i�I� 1�2, J� 1�2,
K� are the effective permittivities evaluated at the
cell edge. From Eq. �8� and relation �9� we obtain
the following difference-differential equation:

ε�r�r��I� 1�2, J� 1�2, K��

c

�Ez�r��I� 1�2, J� 1�2, K�, t�
�t

� kε�i�r��I� 1�2, J� 1�2, K��Ez�r��I� 1�2,

J� 1�2, K�, t�

� �Hx�r��I� 1�2, J, K�, t� �Hx�r��I� 1�2,

J� 1, K�, t����y� �Hy�r��I� 1, J� 1�2, K�, t�

�Hx�r��I, J� 1�2, K�, t����x. (10)

Fig. 2. Geometry for a cell edge and four adjacent cells in a
Cartesian grid.
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The temporal derivative in Eq. �10� can be discretized
in a straightforward manner by use of either a leap-
frog or an exponential scheme. Note that the dis-
cretization in time will not affect the effective
permittivity at the cell edge because it is a time-
independent variable. To evaluate the effective per-
mittivity we let the complex permittivity values for
the four adjacent cells be ε1 � εr1 � iεi1, ε2 � εr2 � iεi2,
ε3 � εr3 � iεi3, and ε4 � εr4 � iεi4. It follows that

The error for the approximation in relation �11� is
small because the tangential component of the elec-
tric field is continuous across the interface, as re-
quired by the electromagnetic boundary condition.
Similarly, we have

ε�i�I� 1�2, J� 1�2, K� � �εi1 � εi2 � εi3 � εi4��4. (12)

The preceding procedure of averaging the cell per-
mittivity is mandatory for any particle geometry de-
fined in a Cartesian grid, even if the staircasing
approximation for defining the particle geometry is
absent. For example, a cubic particle can be well
defined in the Cartesian grid without the staircasing
approximation. However, the cell edges at the par-
ticle surface are surrounded by both empty cells and
dielectric medium cells, a condition for which, to
avoid discontinuity, an average of the permittivity is
required.

C. Perfectly Matched Layer Absorbing Boundary
Condition

The performance of the absorbing boundary condition
is critical to the accuracy of the FDTD technique.
Various analytical absorbing boundary equations
have been developed in the past two decades �see Ref.
8 and the papers cited therein�. These boundary
equations usually require a substantial white space
between the boundary and the scattering target,
thereby reducing the efficiency of the FDTD method
in terms of CPU and memory requirements. Be-
renger’s PML5,6 has been widely applied to various
FDTD implementations. Numerical experiments
have shown that the spurious reflection associated
with the PML boundary condition is approximately 3
orders of magnitude less than that produced by an
analytical boundary equation.9 The PML technique
has been successfully applied to light scattering by
ice crystals.10 Yang and Liou11 have shown that the
absorption of the PML boundary condition is funda-
mentally due to the introduction of artificial diffu-

sions in Maxwell’s equations. For a systematic pre-
sentation of this study, here we recapitulate the PML
boundary equations expressed in a format that con-
tains diffusion terms.
The diffusions are imposed on the electromagnetic

field components that are parallel to the boundary.
In practice, the field must to be separated into two
components, one parallel and one perpendicular to
the boundary, that is,

�Ex, Ey, Ez� � ��Exy � Exz�, �Eyx � Eyz�, �Ezx � Ezy��,

(13a)
�Hx, Hy, Hz� � ��Hxy �Hxz�, �Hyx �Hyz�, �Hzx �Hzy��,

(13b)

The PML equations for theEx andHx components, for
example, are

exp�	�y�y�t�
c

�

�t
�exp��y�y�t�Exy� �

��Hzx �Hzy�

�y
,

(14a)

exp�	�z�z�t�
c

�

�t
�exp��z�z�t�Exz� � 	

��Hyx �Hyz�

�z
,

(14b)

exp�	�y�y�t�
c

�

�t
�exp��y�y�t�Hxy� � 	

��Ezx � Ezy�
�y

,

(14c)

exp�	�z�z�t�
c

�

�t
�exp��z�z�t�Hxz� �

��Eyx � Eyz�
�z

,

(14d)

where �y�y� and �z�z� are zero, except in the boundary
layers perpendicular to the y and z axes. The
present form for the PML boundary equations is
equivalent to that given by Berenger.6 In practical
computations, the diffusion parameters �y�y� and
�z�z� can be specified from zero at the interface of free
space and the artificial diffusion medium to their
maximum values at the outermost layer. For exam-
ple, �y�y� can be defined as

�y�y� � �y,max��y� y0��D�p, (15)

where �y	 y0� is the distance of a grid point from the
interface of free space and the PML medium, D �
L�y is the thickness of the artificial diffusionmedium
for the boundary perpendicular to the y axis, and p is
usually selected to be in the range 2–3. The param-

ε�r�I� 1�2, J� 1�2, K� � �εr1 �
I�x

�I�1�2��x

�
J�y

� J�1�2��y

� εr2 �
�I�1�2��x

�I�1��x

�
J�y

� J�1�2��y

� εr3 �
�I�1�2��x

�I�1��x

�
� J�1�2��y

� J�1��y

� εr4 �
I�x

�I�1�2��x

�
� J�1�2��y

� J�1��y �Ez�r�, t�dxdy��
I�x

�I�1��x

�
J�y

� J�1��y

Ez�r�, t�dxdy� �εr1 � εr2 � εr3 � εr4��4. (11)
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eter �y,max can be specified in terms of the reflectance
of the boundary for normal incidence as follows:

�y,max � 	
p� 1
2D

ln�R�0°��c, (16)

where R�0°� is the boundary reflection factor for nor-
mal incidence. The mean absorption must be taken
into account for each cell distance in discrete compu-
tations. Thus the following two mean values for the
electric and the magnetic fields can be used:

��y�J� �
1

�y �
J	1�2�x

� J�1�2��x

�y�y�dy

�
�y,max
p� 1

�J� 1�2�p�1 � �J� 1�2�p�1

LP�1 E field,

(17a)

��y�J� 1�2� �
1

�y �
J�y

� J�1��y

�y�y�dy

�
�y,max
p� 1

�J� 1�p�1 � Jp�1

LP�1 H field.

(17b)

In this study we use the PML absorbing boundary
condition with seven layers of artificial diffusion me-
dium that are separated from the scattering target by
eight layers of white space. According to the sensi-
tivity study of Lazzi and Gandi,12 we select p � 2.5
and R�0°� � 5 � 10	6.

D. Program Coding Improvement

Advances in the FDTD algorithms coupled with the
increasing power of computers now make it possible
to apply thismethod to size parameters up to 20 on an
ordinary workstation. For particles with refractive
index close to unity, FDTD computation has been
carried out on a supercomputer for size parameters
up to 40.10 The grid size can be much larger in an
optically thin case than in an optically thick case.
The huge CPU and memory requirements of the
FDTD technique are still a major concern in practical
applications. However, a substantial reduction in
computer resources can be achieved by proper pro-
gram coding.
During the course of computational experimenta-

tion we found that the efficiency of the FDTD tech-
nique can be greatly improved if the computational
program is coded in FORTRAN90 rather than in FOR-
TRAN77. In particular, the array-oriented feature in
FORTRAN90 can substantially reduce the CPU time for
initialization and updating of the huge arrays in-
volved in the time-marching iterations of the near
field and in the Fourier-transform calculations that
yield the field values in the frequency domain. In
addition, FORTRAN90 permits dynamic storage alloca-
tion. With this feature the temporal working arrays
that specify particle constants and the PML coeffi-
cients can be deallocated immediately as long as they

are not required for further computation. The effi-
ciency of the FDTD computational program can also
be improved by use of various intrinsic functions that
are permitted in FORTRAN90. Yang and Liou3 have
formulated an algorithm to map the near field �in the
frequency domain� to the corresponding far field on
the basis of a volume integral of the electric field
inside the scattering particle. With the dynamic
memory allocation feature of FORTRAN90, three one-
dimensional arrays can be allocated with the exact
array sizes in the computations to handle the three
Cartesian components of the E field with only non-
empty cells. Moreover, the FDTD computation can
be largely vectorized with these one-dimensional ar-
rays in the Fourier-transform procedure for the field
values in the frequency domain and in mapping the
near file to the far field.

3. Numerical Tests and Discussions

We have improved the FDTD program for light scat-
tering by dielectric particles developed by Yang and
Liou3 by updating the absorbing boundary condition
with the PML technique as well as by coding the
program in FORTRAN90. For a size parameter of 10,
the CPU requirement is reduced by a factor of 2 and
the memory requirement is decreased by approxi-
mately 10%. The improvement is more substantial
for larger-sized parameters. With the improved pro-
gram, we conducted sensitivity computations in con-
junction with the various schemes for evaluating
mean and effective permittivities. Because the
FDTD technique does not give preferential treatment
to any specific particle shape �with the exception of
rectangular targets in a Cartesian grid�, a canonical
study based on spheres can be a representative test of
the technique’s performance. For this reason, the
present computations focus on the scattering proper-
ties of ice spheres at the 15-
m infrared wavelength
at which the refractive index differs substantially
from unity. A spherical particle defined in a Carte-
sian grid lattice is a pseudosphere with step-by-step
surface roughness. The magnitude of the surface
roughness or staircasing effect is proportional to the
grid cell size and inversely proportional to the parti-
cle dimension. It follows that the present sensitivity
study focuses on two representative cases with size
parameters of 1 and 10.
Figure 3 shows a comparison of the phase functions

of ice spheres computed fromMie theory and from the
FDTD technique for a size parameter of 1. In the
latter technique we applied the Maxwell-Garnett, in-
verted Maxwell-Garnett, and Bruggeman rules to
evaluate the mean permittivity for the cells near the
particle surface. In addition, we used an average of
the permittivity given by relations �11� and �12� to
define the effective permittivity at cell edges if the
adjacent cells are different in dielectric constants.
Three grid sizes, �s � ��20, ��25, ��30, were se-
lected, where � is the wavelength in vacuum and �s
���x � �y � �z� is the grid cell size. From Fig. 3 it
can be seen that the inverted Maxwell-Garnett rule
performs best of the three approaches to evaluating
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mean permittivity. In addition, it is evident that the
accuracy of the FDTD results is sensitive to the ratio
of grid size to incident wavelength. The effect of grid
size on the accuracy of the FDTD solution has been
discussed by Yang and Liou.3
Figure 4 is similar to Fig. 3, except that the size

parameter is now 10. For this size parameter the
effect of surface roughness as a result of the staircas-
ing approximation of the particle shape is 10 times
smaller than that shown in Fig. 3 for size parameter
1. Note that the magnitude of the roughness effect
is proportional to �s�r, where r is the radius of the
sphere. Thus the differences in the results obtained
from the three methods applied to evaluation of the
mean permittivity for the partially empty cells are
negligible for a large size parameter. Parameter
���s is a key factor for determining the accuracy of
the FDTD technique, as is evident from Fig. 3.
Table 1 lists the extinction efficiencies and single-

scattering albedos associated with the phase func-
tions for ���s � 30 shown in Figs. 3 and 4.
Comparisons of absolute and relative errors of the
FDTD solution with the Mie results are listed in the
table. For size parameter 1, the inaccuracy of the
Maxwell-Garnett rule is approximately twice that as-
sociated with the inverted Maxwell-Garnett rule.
The accuracy of the Bruggeman rule lies between
those of the two other rules, as is expected from Fig.

1. For size parameter 10, the effect of staircasing is
small because the roughness of the pseudosphere de-
fined in the Cartesian grid is insignificant in compar-
ison with the particle dimension. Again, for this size
parameter, the inverted Maxwell-Garnett rule gives
the best results.
To study the effect of the effective permittivity at

cell edges, we have designed three schemes. In
scheme 1 we apply the inverted Maxwell-Garnett
rule to evaluate the mean permittivity for the par-
tially empty cells located at the particle surface. In
addition, we obtain the effective permittivity at a cell
edge in the time-marching iteration of the E field by
averaging the permittivity values associated with the
four adjacent cells. In scheme 2, a cell is considered
to be empty if 50% of its volume is outside the parti-
cle, and a unity permittivity is assigned to the cell;
otherwise, the permittivity of the particle is applied
to the cell. In this scheme, averaging of the permit-
tivity is not applied to the cell edge; instead, the
particle permittivity is assigned to the cell edge if any
one of the adjacent cells is nonempty. If all four
adjacent cells are empty, a unity permittivity is as-
signed to the cell edge. The procedure for construct-
ing the particle shape in scheme 3 is the same as for
scheme 2. However, in scheme 3 the averaging pro-
cedure is carried out for the cell edges on the basis of
relations �11� and �12�.
Figure 5 shows the phase functions computed with

the these three schemes for size parameter 1 and
their relative errors in comparison with the Mie re-

Fig. 3. Comparison of FDTD and Mie results for the phase func-
tions of ice spheres at 15 
m for a size parameter of 1. Three
approaches are used for evaluating the mean permittivity for par-
tially empty cells located near the particle surface.

Fig. 4. Same as Fig. 3 but for a size parameter of 10.
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sults. We selected ���s � 25 for the computations.
It is evident that scheme 2 produces the largest er-
rors, particularly for scattering angles larger than
120°. The signs of the variations of relative error
versus scattering angle are similar for schemes 2 and
3 because we used the same procedure in construct-
ing the particle shape. However, using the averag-
ing procedure to determine the effective permittivity
for cell edges substantially improved the accuracy of
the FDTD technique, as is shown by comparison of
the results computed from the three schemes. We
note that the relative error in forward scattering is
larger in schemes 2 and 3 than in scheme 1. The
magnitude of the phase function in the forward-
scattering direction is approximately two times
larger than in backscattering. Thus, in terms of to-
tal scattered energy, scheme 1 is also accurate.
Figure 6 is the same as Fig. 5, except that the size

parameter is 10. In this case the staircasing approx-
imation is small in comparison with the particle di-
mension. Thus the method of evaluating the mean

dielectric constants for the partially empty cells lo-
cated near the particle surface becomes less impor-
tant. For this reason the errors in scheme 1 are of
the same order as those in scheme 3. However, the
maximum error produced by scheme 2 is approxi-
mately two times larger than those produced by
schemes 1 and 3. In particular, scheme 2 produces a
40% relative error at the 20° scattering angle where
a resonant minimum is shown. Evidently, the
method with which the effective dielectric constant at
cell edges is evaluated can substantially affect the
performance of the FDTD technique. It affects
mainly the locations at the interface of free space and
the particle medium, regardless of the size parame-
ter. Physically, the accuracy of the electromagnetic
boundary condition �i.e., the tangential components
of the E field and the normal components of the H
field are continuous at medium interface� involved in
the time-marching iteration of the near field in the
time domain depends substantially on the correct-
ness of the dielectric constants defined at the inter-
face. Thus it is critical to evaluate properly the
dielectric constant at the cell edges.
Table 2 lists the FDTD solutions and the associated

errors for the extinction efficiencies and single-

Fig. 5. Comparison of the performance of three schemes to ac-
count for the discontinuity of permittivity at the interface of free
space and the particle medium in conjunction with the FDTD
computation of phase function for an ice sphere with a size param-
eter of 1. Fig. 6. Same as Fig. 5 but for a size parameter of 10.

Table 1. Extinction Efficiencies Qe and Single-Scattering Albedos �̃ Corresponding to the Phase Functions Shown in Figs. 3 and 4 for ���s � 30a

Qe �FDTD� �Qe
�Qe�Qe �Mie�

�%� �̃ �FDTD� ��̃
��̃��̃ �Mie�

�%�

� � 1 �Qe �Mie� � 0.7342, �̃
�Mie� � 0.3699�

Maxwell-Garnett 0.7931 0.0589 8.02 0.3799 0.0100 2.70
Inverted Maxwell-Garnett 0.7683 0.0341 4.64 0.3757 0.0058 1.57
Bruggeman 0.7822 0.0480 6.54 0.3772 0.0073 1.97

� � 10 �Qe �Mie� � 2.4177,
�̃ �Mie� � 0.4943�

Maxwell-Garnett 2.3904 	0.0273 	1.13 0.4987 0.0044 0.89
Inverted Maxwell-Garnett 2.3927 	0.0250 	1.03 0.4983 0.0040 0.81
Bruggeman 2.3915 	0.0262 	1.08 0.4986 0.0043 0.87

aAlso listed are the values of absolute error and relative error for the two quantities. Note that �Qe � Qe �FDTD� 	 Qe �Mie� and ��̃ �
�̃�FDTD� 	 �̃�Mie�.
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scattering albedos that correspond to the phase func-
tions shown in Figs. 5 and 6. It is evident that
substantial inaccuracies can occur if the effective per-
mittivity values at the cell edges are not properly
evaluated. The inaccuracies caused by inappropri-
ate treatment of the permittivity at the cell edges is
more significant in the computation of extinction ef-
ficiency than in the computation of the single-
scattering albedo. This is so because the errors may
lead to an overestimation or underestimation of the
extinction and scattering cross sections in a consis-
tent manner; thus the errors can be largely canceled
in the single-scattering albedo calculations. From
Figs. 5 and 6 and Table 2 it can be noted that scheme
1 is the most accurate of the three schemes. Thus
we shall use scheme 1 in the rest of this study.
To demonstrate the accuracy of the present im-

proved FDTD computational program we show in
Fig. 7 the phase functions for an ice sphere at 11- and
15-
m wavelengths. The refractive indices for the
two wavelengths are 1.0925 � i0.248 and 1.571 �
i0.1756, respectively. Because the magnitude of the
ice’s refractive index at the 15-
m wavelength is ap-
proximately 1.3 times larger than that at 11 
m, the

resolution of �p��s � 25 at the latter wavelength is
equivalent to a resolution of �p��s � 32.5 at the
former, where �p is the wavelength within the parti-
cle medium. For this reason we select ���s � 25,
30, respectively, for the 11- and 15-
m wavelengths.
The relative errors of the phase functions computed
from the FDTD technique are less than 10%. The
error maxima are noted mainly at the angular loca-
tions that correspond to the resonant minima and
backscattering. Finally, it should be pointed out
that the grid size must be less than 1�20 of the wave-
length inside the particle to prevent substantial com-
putational dispersion in the FDTD implementation.

4. Application to Light Scattering by Aerosols

The shapes of aerosols are diverse, ranging from
quasi-spheres to highly irregular geometries. Min-
eral, dustlike, and soil aerosols are largely nonspheri-
cal particles with mean aspect ratios substantially
different from unity.13–15 Knowledge of the funda-
mental scattering and absorption properties of aero-
sols is essential to the development of a physically
based and accurate retrieval algorithm for aerosol
optical depth.16 Mishchenko et al.17,18 have demon-
strated that the effect of nonsphericity on the optical
properties of aerosols has the potential to be great
and that the equivalent spherical approximation for
the single-scattering properties of nonspherical par-
ticles based onMie theory is physically inappropriate
and often misleading. Using a mixture of prolate
and oblate spheroids for aerosols, Mishchenko et al.17
showed that the errors that are due to neglect of
particle nonsphericity are much larger than those
that stem from measurement errors and can easily
exceed 100% in the retrieval of aerosol optical depth.
In what follows, we investigate the deviation of the
phase functions computed for convex and concave
aerosols based on the FDTD technique from those
computed for spheres and spheroids.
The sizes of convex and concave aerosols can be

specified in terms of their peripheral spheroids. To
construct a convex geometry, for example, a ten-faced
convex shape, we select seven points on a sphere with
a unit radius. The coordinate values of these seven
points can be given by � x̃i, ỹi, z̃i� � �sin �i cos �i, sin
�i sin �i, cos �i�, where i � 1–7 indicate the seven

Fig. 7. Comparison of FDTD and Mie results for the phase func-
tion of ice spheres by use of grid resolutions ���s � 25, 30, respec-
tively, for optically thin �1.0925 � i0.248� and thick �1.5710 �
i0.1756� cases.

Table 2. Extinction Efficiencies Qe and Single-Scattering Albedos �̃ Corresponding to the Phase Functions Shown in Figs. 5 and 6a

Scheme Number Qe �FDTD� �Qe �Qe�Qe �Mie� �%� �̃ �FDTD� ��̃ ��̃��̃ �Mie� �%�

� � 1 �Qe �Mie� � 0.7342,
�̃ �Mie� � 0.3699�
1 0.7813 0.0471 6.42 0.3814 0.0115 3.11
2 0.8526 0.1184 16.12 0.4230 0.0531 14.35
3 0.8411 0.1069 14.56 0.3945 0.0246 6.65

� � 10 �Qe �Mie� � 2.4177,
�̃�Mie� � 0.4943�
1 2.3793 	0.0384 	1.59 0.4994 0.0051 1.03
2 2.2734 	0.1443 	5.97 0.5022 0.0079 1.60
3 2.3768 	0.0407 	1.68 0.5003 0.0060 1.20

aAlso listed are the values of absolute error and relative error. Note that �Qe � Qe �FDTD� 	 Qe �Mie� and ��̃ � �̃ �FDTD� 	 �̃ �Mie�.
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points and �i and �i are the zenith and azimuthal
angles of the points, respectively. One can construct
a ten-faced convex shape that is enveloped by a unit
sphere by properly connecting the seven points. To
obtain a convex shape with a desired size and aspect
ratio, we can stretch the coordinate values, using the
relationship �xi, yi, zi� � �ax̃i, aỹi, bz̃i�, where a and b
are the semiaxes of the spheroid that envelops the
convex particle. We obtain an oblate particle if a �
b and a prolate particle if a � b.
To construct a concave particle we select two

right-triangular pyramids. The base of one of the
pyramids faces up, and that of the other pyramid
faces down. In addition, the distance from the
apexes to the centers of the pyramids is selected to
be unity. The two pyramids share the same origin.
Thus the apexes of the two pyramids are confined
on a unit sphere. Employing the preceding coor-
dinate stretching procedure, we can obtain various
aspect ratios and sizes for the concave geometry.
We select two refractive indices,m� 1.38 � i3.9 �

10	9 and 1.75 � i0.44, which represent aerosols with
oceanic sources and soots, respectively. Figure 8
shows the phase functions and the degrees of linear
polarization computed for various six-faced convex
aerosols with aspect ratios a�b � 1�2, 1, 2. The
particles are assumed to be randomly oriented in
space. For a size parameter of 5, substantial differ-
ences are noted for the three aspect ratios in the
side-scattering directions about 120°. For a size pa-
rameter of 10, the differences in the phase function

are mainly in forward scattering. The volume asso-
ciated with a�b� 1 is larger than those for a�b� 1�2,
2. Thus the particles with a�b � 1 have a larger
scattering capability and produce a stronger forward
peak. However, the particle volume seems not to be
a dominant factor in determining the scattering prop-
erties. For example, the phase functions for a�b �
1�2, 2 are quite different, although the corresponding
particle volume is similar in these two cases. The
pattern of degrees of linear polarization is not sensi-
tive to the aspect ratio, except for a size parameter of
5 with strong absorption.
Figure 9 shows the phase functions for convex and

concave aerosols for three aspect ratios in comparison
with those for spheroids that have the same aspect
ratios. The scattering properties of spheroidal par-
ticles were computed by the T-matrix method.19 For
a�b � 1, the phase functions for nonspherical parti-
cles are substantially smaller than those for spheres
in the scattering angular region 120°–180°; in partic-
ular, the differences in the results for spherical and
nonspherical particles are pronounced in the back-
scattering. For a�b� 2, 1�2, we also see substantial
differences between smooth spheroids and irregular
convex and concave particles.
Finally, we compare theoretical phase function

results with experimental data, as shown in Fig. 10.
The theoretical results correspond to an ensemble
of randomly oriented concave and convex particles.
The experimental data are determined from the

Fig. 8. Comparison of phase function and degree of linear polar-
ization for randomly oriented six-faced convex aerosol particles
with aspect ratios of 1, 2, and 1�2.

Fig. 9. Comparison of the phase functions for oceanic aerosol
particles of various shapes. For spherical particles, i.e., a�b � 1,
a power-law size distribution is employed to smooth out the reso-
nant fluctuations. The size parameter used is xmax � 10.
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measurements made by Zurell,20 who used the mi-
crowave analog technique for randomly oriented
convex and concave particles with a refractive index
m � 1.5 � i0.005 and size parameters ranging from
5.9 to 17.8. The data have been reanalyzed by Pol-
lack and Cuzzi.21 The equivalent spherical results
are based on the volume of the particle geometry
used in the theoretical computation. The phase
function for nonspherical particles computed for the
FDTD method appears to match the experimental
results.

5. Conclusions

We have improved the Cartesian FDTD scheme by
properly evaluating the dielectric constant for par-
tially empty cells and the cell edges located at the
interface of free space and the particle medium. We
have also increased the efficiency of the FDTD pro-
gram by employing the PML technique and coding in
FORTRAN90.
Based on the improved FDTD program, the accu-

racy of various approaches to dealing with the sub-
grid variation and discontinuity of a dielectric
constant at the particle surface was investigated.
The magnitude of the staircasing approximation of
particle shape on a Cartesian grid is inversely pro-
portional to the ratio of the grid size to the particle
dimension. For a small size parameter, the stair-
casing effect is substantially large. We have illus-
trated that the inverted Maxwell-Garnett rule is the
most effective in reducing the staircasing effect.
With an increase in the size parameter, the staircas-
ing effect decreases, and the method that one uses to
evaluate the mean permittivity becomes less impor-
tant. We also investigated the effect of the discon-

tinuity of permittivity at the interface of free space
and the particle medium that exists regardless of the
pseudoparticle shape defined in the Cartesian grid.
This effect must be properly accounted for because
the electromagnetic boundary condition implied in
the computation of the near field essentially depends
on the permittivity at the surface cell edges. Nu-
merical results have revealed that the effective per-
mittivity given by the average of the permittivity
values of four adjacent cells can substantially reduce
the discontinuity effect.
We applied the improved FDTD code to the study of

light scattering by nonspherical aerosols. We con-
structed convex and concave particle shapes to re-
semble dust and some irregular aerosols and carried
out calculations of phase function and linear polar-
ization patterns. Comparisons with results com-
puted from the T matrix for spheroids and the Mie
theory for spheres were made. We showed that sub-
stantial differences occur, particularly in backscat-
tering directions. Finally, we found that the
theoretical phase function computed for the convex
and concave particles is in reasonably good agree-
ment with available microwave analog experimental
results.

This research has been supported by National Sci-
ence Foundation grant ATM-97-96277 and NASA
grant 5-7738 and partially by the U.S. Office of Naval
Research.
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